
LEVERAGING CONVENTION
OVER CONFIGURATION FOR

STATIC ANALYSIS IN DYNAMIC
LANGUAGES

David Worth
dave@highgroove.com (email) - @highgroovedave (twitter)

Tuesday, October 23, 12

mailto:dave@highgroove.com
mailto:dave@highgroove.com

Or why it’s ok to write simple frameworks for
complicated tasks

Tuesday, October 23, 12

ABOUT ME

•Developer and Security Engineer for Highgroove Studios in
Atlanta GA, USA

• Background in computer science, mathematics, and systems
security (not web!)

• Contributor to the Brakeman project since 2011

Tuesday, October 23, 12

THIS IS NOT A RAILS TALK!

• Really we’re not talking about Ruby on Rails

• Rails does a lot right that helps us to secure our applications

• Those same things help us to automatically reason about them

• They are essentially well codified calling conventions hidden
under the hood

• This can be done in any language!

Tuesday, October 23, 12

“CONVENTION”

• sensible defaults in behavior and settings with an explicit “right
way” for common idioms

• allows developers to think less about easy things and more
about hard things (domain/business logic)

•makes hard things easier by guiding the way, makes impossibly
complicated things tractable

Tuesday, October 23, 12

... OVER “CONFIGURATION”

• Contrast convention against configuration of complicated web
frameworks (think Java’s Struts or Python’s Django)

• Fewer knobs to turn making the “right way” more obvious and
easy

•Only dig deep, turn knobs, do it yourself if you’ve exhausted
the provided tools

Tuesday, October 23, 12

RUBY

•Object-Oriented “dynamic” language with inspiration from
SmallTalk, Perl, Lisp, ...

• “duck typing” is preferred to strict typing

• flexible syntax allows for easy and powerful Domain Specific
Languages (DSLs)

Tuesday, October 23, 12

RUBY ON RAILS

• A convention-over-configuration (CoC) MVC framework for
applications working over HTTP/S

•Not just for “web” apps anymore (thinks RESTful APIs)

• An entire flexible stack allowing hooking at instrumenting at
any number of levels

• This stack also allows a separation of concerns for auditors

Tuesday, October 23, 12

RAILS UNDER THE HOOD

• Rails is a Ruby domain-specific language for writing HTTP/S
exposed applications

• “Magic” methods are always clever, but also consistent, method
calls

• Conventions are always preferred over being “clever”

Tuesday, October 23, 12

STATIC ANALYSIS

• The process (art) of reasoning about a program without
executing it

• The goal may be proving correctness, optimization, or finding
potential bugs

•May be used for analyzing malware as part of your Reverse
Engineering stack

• In dynamic languages, operate at the same level as a compiler :
the Abstract Syntax Tree (AST)

Tuesday, October 23, 12

STATIC ANALYSIS OF RUBY

• Use Racc to generate a Ruby grammar

• Use RubyParser to use that grammar to parse a given Ruby
program into an AST

• Use SexpProcessor or custom code to analyze specific
“interesting” parts of the AST.

Tuesday, October 23, 12

STATIC ANALYSIS OF RUBY

•Or use Ripper for Ruby 1.9 (part of Ruby core) - s-expression
generation is explicitly listed as “Experimental”

• Rubinius Melbourne (and Melbourne19) gems

Tuesday, October 23, 12

STATIC ANALYSIS OF PYTHON

• Python supports static analysis via the Python Language Tools
in StdLib

• Tools using it today: PyChecker, PyLint, PyFlakes

•No security specific tools

Tuesday, October 23, 12

WEB SECURITY
• “Trivial” - Cross-Site Scripting

(XSS), Cross-Site Request Forgery
(CSRF), SQL-Injection (SQLi)

•Non-trivial - application specific
relying on the specific combination
of technologies in the app to
exploit (“chained” exploits)

•Other - OWASP’s list of attacks
includes as many systems issues as
“web”

Tuesday, October 23, 12

WEB APPLICATION
VULNERABILITY SCANNERS

• SkipFish - Michael Zalewski
(Google)

• w3af - Web Application
Attack and Audit Framwork
(Andrés Riancho)

• Retina (eEye Digital
Security)

• Brakeman - Justin Collins,
Neil Matatall (Twitter),
Many Others (myself
included)

• Scanny - OpenSUSE team

Dynamic / Runtime Static Analysis

Tuesday, October 23, 12

TRACKING DOWN AN XSS

• XSS is always “trivial”, but spotting one during an audit might
not be

Tuesday, October 23, 12

SUBTLE XSS
class UsersController < ApplicationController
 before_filter :get_users

 def index; end

 private
 def get_users
 @users = User.all #where User is a model
 end
end

Tuesday, October 23, 12

SUBTLE XSS (con’t)
<%# index.html.erb %>
<%= render partial: "user", collection: @users %>

<%# _user.html.erb %>
Stuff about the user...
<%= render partial: 'bio', locals: { user_bio: raw(user.bio) } %>

<%# _bio.html.erb %>
Awesome bio: <%= user_bio %>

Tuesday, October 23, 12

SUBTLE XSS (con’t)

View Warnings:

+------------+--------------+---+
| Template | Warning Type | Message |
+------------+--------------+---+
| users/_bio | XSS | Unescaped model attribute near line 1: (Unresolved Model).new.bio |
+------------+----------------------+---+

Brakeman Results:*

* edited for screen space
Tuesday, October 23, 12

SUBTLE XSS (con’t)
<%# list.html %>
<%= render :partial => "user", :collection => @users %>

<%# _user.html.erb %>
Stuff about the user...
<%= render partial: 'bio', :locals => { :user_bio => raw(user.bio) } %>

<%# _bio.html.erb %>
Awesome bio: <%= user_bio %>

Tuesday, October 23, 12

SUBTLE XSS (con’t)

• Rails 3 assumes all output is evil and escapes it during output

• Rails 2 requires developers to mark output as HTML “safe”

Tuesday, October 23, 12

 SQli

• Isn’t that problem pretty much solved? That comic isn’t even
funny anymore (not since 2008? Maybe?)

•Why static analysis for SQLi tracking?

 How about $grep -rin “where.*#{“?
 or $grep -rin params *

Tuesday, October 23, 12

SQLi (con’t)
• “Semantic grep” is hard, and often vague

• It often works for obviously bad things, but not for nuanced
problems

• Checking for #{ in a scope is not sufficient!

Tuesday, October 23, 12

SQLi (con’t)

class User < ActiveRecord::Base
 attr_accessible :name, :bio

 scope :name_like,
 lambda { |first_name| where("name LIKE ?", "#{first_name}%")}

 scope :bad_name_like,
 lambda { |first_name| where("name LIKE '#{first_name}%'")}
end

Tuesday, October 23, 12

LEVERAGING RAILS’
CONVENTIONS

• Input sources for actions are very standard:

• params - HTTP query parameters

• cookies - the cookie object

• request - the HTTP request object

Tuesday, October 23, 12

USER INPUT IN RAILS
Tracing user input, or input derived from user-input, is easy

class UsersController < ApplicationController
 def sender
 # This is flagged even with our attempts to whitelist
 method = cookies[:method].gsub("[^a-z]",'')+"appended"
 User.first.send(method)

 # dangerous parameter host is caught
 redirect_to params.merge(action: :index)
 end
end

Tuesday, October 23, 12

EXTENSIBILITY TO GEMS

• Ruby libraries come in “gems”

•many gems for Rails apps strive to provide conventions within
the Rails idioms

Tuesday, October 23, 12

RAILS DEPENDENCY
CHECKING

•Modern Rails apps rely on Bundler to manage gem
dependencies

• Bundler tracks version numbers for dependency reasons, can
be used to check for vulnerable versions of Rails

•May be extended to track vulnerable gems (requires gems to
use CVEs or another tracking system)

Tuesday, October 23, 12

GEMS (CON’T)

• Ernie Miller’s MetaSearch provides security methods to mirror
attr_accessible and attr_protected:
attr_searchable, attr_unsearchable,
assoc_searchable, assoc_unsearchable

•Not currently supported by Brakeman but is a fairly simple
extension (similar to checking for attribute restrictions)

Tuesday, October 23, 12

IT ISN’T ABOUT RAILS!

• Really we’re not talking about Rails

• Rails does a lot right that helps us to secure our applications

• Those same things help us to automatically reason about them

• They are essentially well codified calling conventions hidden
under the hood

• This can be done in any language!

Tuesday, October 23, 12

BUT THIS IS A SECURITY
CONFERENCE...

• Should we be talking about attacking web apps instead of
securing them?

• CoC also allows for more efficient and accurate auditing

• By understanding what conventions exist we also know in
what ways we can attack those conventions (when used by
less skilled developers)

• There’s no magic bullet

Tuesday, October 23, 12

FULL STACK FRAMEWORKS

• Full stack MVC Frameworks implement all components
needed for a web application, including user-input, routing and
business logic, and a persistence layer for “model” or other
data

Tuesday, October 23, 12

DJANGO

• Full-Stack (MTV) framework but not-CoC written in Python

•Developers must decide on organization of applications

Tuesday, October 23, 12

DJANGO

• Focus on security various layers:

• persistence layer to prevent SQLi via querysets

• presentation layer to prevent XSS via escaping

• request layer via anti-CSRF nonce - but must remember to
include it (though a warning is displayed if it is not)!

Tuesday, October 23, 12

GROK

• Python based CoC framework

•No convention for user controlled data in actions. All
parameters to an action must be treated as user controlled...
but what about in methods lower down the call tree?

Tuesday, October 23, 12

GRAILS

• Groovy, a JVM based dynamic language (with static typing and
compilation)

• Grails - Rails reimplemented in Groovy

• CodeNarc static analysis engine leverages the strength of the
JVM, Grails exposes user data very consistently in the same
fashion as Rails

Tuesday, October 23, 12

MICROFRAMEWORKS

• Ruby - Sinatra, Cuba

• Python - Flask

Tuesday, October 23, 12

MICROFRAMEWORKS

• Lightweight - may only implement a subset of the MVC stack

• Commonly only routing and presentation are implemented,
letting persistence be implemented elsewhere if needed

• This is fantastic for small apps or API endpoints

Tuesday, October 23, 12

SINATRA

• From their README: “Sinatra is a DSL for quickly creating web
applications in Ruby with minimal effort”

• Also great for writing lightweight API endpoints

•Does not carry with it the heavyweight baggage of
ActiveRecord, etc.

Tuesday, October 23, 12

SINATRA (con’t)

• routes are defined with the get or post methods

• parameters may be passed in multiple ways

Tuesday, October 23, 12

SINATRA (con’t)

get '/hello/:name' do
 "Hello #{params[:name]}!"
end

Some are easy to reason about:

Tuesday, October 23, 12

SINATRA (con’t)

Some are harder (but still possible) to reason about:

get '/hello/:name' do |n|
 "Hello #{n}!"
end

We assume that all block parameters are user controlled

Tuesday, October 23, 12

ADDING CONVENTIONS

• To implement conventions effectively in a web framework we
must

• identify boundaries: user-input, persistence, output

•make entry and exit points to those boundaries extremely
consistent and sufficiently powerful that developers don’t
attempt to bypass them

• lean on those methods to identify vulnerabilities

Tuesday, October 23, 12

FULL-STACK FRAMEWORKS

• Rails, Grails, Django, and Grok are all “full-stack” frameworks

• These frameworks must concern themselves with user-input,
persistence, and output

• Since they provide all of these layers they can

• provide sane defaults that may be reasoned about

• focus on securing the interfaces between the layers

Tuesday, October 23, 12

MICROFRAMEWORKS

•Micro-frameworks may implement only some concerns

• Reasoning about those interfaces is more difficult if a
developer rolls her own persistence layer

• Generalizing from the beginning may lead to YAGNI

•Not generalizing leads to difficult to reason about resource /
security boundaries

Tuesday, October 23, 12

QUESTIONS?

Tuesday, October 23, 12

MERCI!

Tuesday, October 23, 12

